Structure and stability of the non-covalent swapped dimer of bovine seminal ribonuclease: an enzyme tailored to evade ribonuclease protein inhibitor.

نویسندگان

  • Filomena Sica
  • Anna Di Fiore
  • Antonello Merlino
  • Lelio Mazzarella
چکیده

A growing number of pancreatic-type ribonucleases (RNases) present cytotoxic activity against malignant cells. The cytoxicity of these enzymes is related to their resistance to the ribonuclease protein inhibitor (RI). In particular, bovine seminal ribonuclease (BS-RNase) is toxic to tumor cells both in vitro and in vivo. BS-RNase is a covalent dimer with two intersubunit disulfide bridges between Cys(31) of one chain and Cys(32) of the second and vice versa. The native enzyme is an equilibrium mixture of two isomers, MxM and M=M. In the former the two subunits swap their N-terminal helices. The cytotoxic action is a peculiar property of MxM. In the reducing environment of cytosol, M=M dissociates into monomers, which are strongly inhibited by RI, whereas MxM remains as a non-covalent dimer (NCD), which evades RI. We have solved the crystal structure of NCD, carboxyamidomethylated at residues Cys(31) and Cys(32) (NCD-CAM), in a complex with 2'-deoxycitidylyl(3'-5')-2'-deoxyadenosine. The molecule reveals a quaternary structural organization much closer to MxM than to other N-terminal-swapped non-covalent dimeric forms of RNases. Model building of the complexes between these non-covalent dimers and RI reveals that NCD-CAM is the only dimer equipped with a quaternary organization capable of interfering seriously with the binding of the inhibitor. Moreover, a detailed comparative structural analysis of the dimers has highlighted the residues, which are mostly important in driving the quaternary structure toward that found in NCD-CAM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer.

Bovine seminal ribonuclease (BS-RNase) is a homologue of bovine pancreatic ribonuclease (RNase A). Unlike RNase A, BS-RNase has notable toxicity for human tumor cells. Wild-type BS-RNase is a homodimer linked by two intermolecular disulfide bonds. This quaternary structure endows BS-RNase with resistance to inhibition by the cytosolic ribonuclease inhibitor protein (RI), which binds tightly to ...

متن کامل

Swapping structural determinants of ribonucleases: an energetic analysis of the hinge peptide 16-22.

Bovine seminal ribonuclease (BS-RNase) is a homodimeric enzyme strictly homologous to the pancreatic ribonuclease (RNase A). Native BS-RNase is an equilibrium mixture of two distinct dimers differing in the interchange of the N-terminal segments and in their biological properties. The loop 16-22 plays a fundamental role on the relative stability of the two isomers. Both the primary and tertiary...

متن کامل

The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution.

The dimer of bovine pancreatic ribonuclease A (RNase A) discovered by Crestfield, Stein, and Moore in 1962 has been crystallized and its structure determined and refined to a 2.1-A resolution. The dimer is 3D domain-swapped. The N-terminal helix (residues 1-15) of each subunit is swapped into the major domain (residues 23-124) of the other subunit. The dimer of bull seminal ribonuclease (BS-RNa...

متن کامل

Bovine seminal ribonuclease produced from a synthetic gene.

Bovine seminal ribonuclease (BS-RNase), a homolog of bovine pancreatic ribonuclease (RNase A), is isolated as a dimer in which the subunits are cross-linked by two disulfide bonds. In addition to this anomalous quaternary structure, the enzyme has extraordinary biological properties, such as antispermatogenic, antitumor, and immunosuppressive activities. The molecular bases for these properties...

متن کامل

Crystal structure of a hybrid between ribonuclease A and bovine seminal ribonuclease ± the basic surface, at 2.0 AÊ resolution

A variant of bovine pancreatic ribonuclease A has been prepared with seven amino acid substitutions (Q55K, N62K, A64T, Y76K, S80R, E111G, N113K). These substitutions recreate in RNase A the basic surface found in bovine seminal RNase, a homologue of pancreatic RNase that diverged some 35 million years ago. Substitution of a portion of this basic surface (positions 55, 62, 64, 111 and 113) enhan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 35  شماره 

صفحات  -

تاریخ انتشار 2004